Mechanisms of Podocyte Injury in Diabetes
نویسندگان
چکیده
OBJECTIVE We investigated the role of cytochrome P450 of the 4A family (CYP4A), its metabolites, and NADPH oxidases both in reactive oxygen species (ROS) production and apoptosis of podocytes exposed to high glucose and in OVE26 mice, a model of type 1 diabetes. RESEARCH DESIGN AND METHODS Apoptosis, albuminuria, ROS generation, NADPH superoxide generation, CYP4A and Nox protein expression, and mRNA levels were measured in vitro and in vivo. RESULTS Exposure of mouse podocytes to high glucose resulted in apoptosis, with approximately one-third of the cells being apoptotic by 72 h. High-glucose treatment increased ROS generation and was associated with sequential upregulation of CYP4A and an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and Nox oxidases. This is consistent with the observation of delayed induction of NADPH oxidase activity by high glucose. The effects of high glucose on NADPH oxidase activity, Nox proteins and mRNA expression, and apoptosis were blocked by N-hydroxy-N'-(4-butyl-2-methylphenol) formamidine (HET0016), an inhibitor of CYP4A, and were mimicked by 20-HETE. CYP4A and Nox oxidase expression was upregulated in glomeruli of type 1 diabetic OVE26 mice. Treatment of OVE26 mice with HET0016 decreased NADPH oxidase activity and Nox1 and Nox4 protein expression and ameliorated apoptosis and albuminuria. CONCLUSIONS Generation of ROS by CYP4A monooxygenases, 20-HETE, and Nox oxidases is involved in podocyte apoptosis in vitro and in vivo. Inhibition of selected cytochrome P450 isoforms prevented podocyte apoptosis and reduced proteinuria in diabetes.
منابع مشابه
Mammalian Target of Rapamycin Regulates Nox4-Mediated Podocyte Depletion in Diabetic Renal Injury
Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Pharmacological doses of the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduce albuminuria in diabetes. We explored the hypothesis that mTOR mediates podocyte injury in diabetes. High glucose (HG) induces apoptosis of podocytes, inhibits AMP-activated protein kinase...
متن کاملStressed-out podocytes in diabetes?
Diabetic nephropathy is the most common cause of ESRD in the United States.1 Although current strategies can slow disease progression,2,3 development of renal failure requiring renal replacement therapy is a distressingly common outcome in patients with diabetes.1 As a result, much effort has been devoted to understanding the mechanisms that promote glomerular damage in diabetic kidney disease ...
متن کاملFrom the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.
Nephropathy is a major complication of diabetes. Alterations of mesangial cells have traditionally been the focus of research in deciphering molecular mechanisms of diabetic nephropathy. Injury of podocytes, if recognized at all, has been considered a late consequence caused by increasing proteinuria rather than an event inciting diabetic nephropathy. However, recent biopsy studies in humans ha...
متن کاملMechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis.
Glomerular capillary hypertension is a final common pathway to glomerulosclerosis. Because podocyte loss is an early event in the development of glomerulosclerosis, it is logical that the deleterious effects of glomerular capillary hypertension involve podocyte injury. Yet, the mechanisms by which elevated intraglomerular pressure is translated into a maladaptive podocyte response remain poorly...
متن کاملInduction of antioxidant enzymes in murine podocytes precedes injury by puromycin aminonucleoside.
BACKGROUND An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms has been suggested to play an important role in podocyte injury in nephrotic syndrome. Experimental nephrotic syndrome induced by injection of puromycin aminonucleoside (PAN) into rats is a well-established model of nephrotic syndrome, and can be largely prevented by pretreatment w...
متن کاملPodocyte structural parameters do not predict progression to diabetic nephropathy in normoalbuminuric type 1 diabetic patients.
BACKGROUND Podocyte injury has been implicated in diabetic nephropathy (DN) ranging from normoalbuminuria to proteinuria in both type 1 and type 2 diabetes. METHODS To determine whether podocyte structural parameters predict DN risk in initially normoalbuminuric long-standing type 1 diabetic patients, we performed a nested case-control study in sex and diabetes duration-matched progressors (p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 58 شماره
صفحات -
تاریخ انتشار 2009